
Saleae Device SDK 1.1.8

1 Copyright 2011 Saleae LLC. All Rights Reserved.

Contents

Starting a Device SDK Project on Windows .. 2

Starting a Device SDK Project on Linux ... 7

Debugging your Project with GDB .. 9

Starting a Device SDK Project on Mac ... 11

Build Script / Command Line / GDB based Device Project ... 11

Making a SaleaeDevice Project with Xcode .. 13

Running & Debugging your Project ... 19

ConsoleDemo.cpp – a Walkthrough ... 20

Include Files... 20

Static callback functions .. 20

Global Variables .. 21

Main .. 21

OnConnect Callback .. 21

OnDisconnect Callback ... 22

ReadByte and WriteByte ... 22

Reading and Writing, and the OnReadData and OnWriteData Callbacks ... 23

OnError.. 24

C#.NET Support ... 26

A few pointers for creating .NET projects ... 26

Saleae Device SDK 1.1.8

2 Copyright 2011 Saleae LLC. All Rights Reserved.

Starting a Device SDK Project on Windows

The instructions that follow are for setting up a Visual Studio project from scratch. Included in the SDK is

a vs2008 project called ConsoleDemo, which should immediately build and run. If you like, you can skip

the following section, and return to it if you have any questions about how a Visual Studio project

should be set up.

1. If you haven’t already, download the latest SaleaeDeviceSdk-1.1.x.zip file and extract to this to your

desktop, or other convenient location.

2. Launch VS2008 – we’re using the C++ express version.

http://www.microsoft.com/express/Downloads/ (as of the time of this writing, there is VS2008 tab

still on the page). Customers have reported that using VS2010 will also work.

3. File->New->Project

a. Visual C++; Win32

b. Win32 Console Application (under Templates)

c. Name: enter a name for the project, such as MyRecorder

d. Location: Desktop\SaleaeDeviceSdk-1.1.x

e. Make sure Create directory for solution is not checked.

f. Press OK.

g. Click Application Settings

i. Application Type: Console application

ii. Additional options:

1. Precompiled header (not checked)

2. Empty project (checked)

Saleae Device SDK 1.1.8

3 Copyright 2011 Saleae LLC. All Rights Reserved.

h. Click Finish.

4. Delete the Header Files and Resource Files folders, from under our project item in the Solution

Explorer.

5. Open the SaleaeDeviceSdk-1.1.x folder, and copy the source folder into your new project folder.

a. Note: this will allow modifications to your own copy of the source, and leave the originals

unchanged. If this is not desired, you can simply use the source files in their original location.

6. In Visual Studio, right click on the Source Files folder, and select Add->Existing Item.

7. Navigate to your new project folder, into the source folder (that we just copied) and select

ConsoleDemo.cpp.

Saleae Device SDK 1.1.8

4 Copyright 2011 Saleae LLC. All Rights Reserved.

8. In the Solution Explorer, right click on the project item (not the solution item) and choose

Properties.

a. Under Configuration, select All Configurations.

b. Under C/C++, select General. Under Additional Include Directories, enter

$(ProjectDir)..\include

c. Expand Linker and select General. Under Additional Library Directories, enter

$(ProjectDir)..\lib

Saleae Device SDK 1.1.8

5 Copyright 2011 Saleae LLC. All Rights Reserved.

d. Under Linker, select Input. Under Additional Dependencies, enter SaleaeDevice.lib

e. Expand Build Events, and select Post-build Event.

i. Under Command Line, enter copy $(ProjectDir)..\lib*.dll $(TargetDir)

ii. This will copy required DLLs to the same location as the executable. In production,

make sure these DLLs are included with the executable, in the same directory.

Saleae Device SDK 1.1.8

6 Copyright 2011 Saleae LLC. All Rights Reserved.

f. Click OK.

9. You should now be able to build and run the application.

Saleae Device SDK 1.1.8

7 Copyright 2011 Saleae LLC. All Rights Reserved.

Starting a Device SDK Project on Linux

1. If you haven’t already, download and extract the SaleaeDeviceSdk-1.1.x to your desktop, or

other convenient location.

2. Decide on a name for your project, MyRecorder, for example. Open the SaleaeDeviceSdk-1.1.x

folder and create a new folder with this name.

3. Select the source folder, and file build_project.py. Copy and paste these into your new project

folder.

Saleae Device SDK 1.1.8

8 Copyright 2011 Saleae LLC. All Rights Reserved.

4. Open console and navigate to your new project folder. Something like: cd

Desktop\SaleaeDeviceSdk-1.1.5\MyRecorder

5. Inside the source folder we copied is a single cpp file, ConsoleDemo.cpp. You can modify this, or

replace it, but for now we’ll leave it as is and get it building.

6. From the console, type python build_project.py

Saleae Device SDK 1.1.8

9 Copyright 2011 Saleae LLC. All Rights Reserved.

7. This will create two folders -- debug and release -- and build the application in each.

8. To execute the new program navigate to the debug folder and run the program:

a. cd debug

b. ./MyRecorder (replace MyRecorder with the name of your project)

9. To exit the program type exit, or e.

Debugging your Project with GDB

1. From your application’s debug folder, type gdb MyRecorder (substitute your project name)

2. Set a breakpoint to be fired when Logic connects:

Saleae Device SDK 1.1.8

10 Copyright 2011 Saleae LLC. All Rights Reserved.

a. type: break ::OnConnect

3. Start the program

a. Type run

4. You should get a breakpoint when you connect Logic.

5. Type step to step line by line after a breakpoint has been hit, and continue to continue normal

execution.

6. More in-depth use of GDB is outside the scope of this document.

Saleae Device SDK 1.1.8

11 Copyright 2011 Saleae LLC. All Rights Reserved.

Starting a Device SDK Project on Mac

Build Script / Command Line / GDB based Device Project

1. If you haven’t already, download and extract the SaleaeDeviceSdk-1.1.x to your desktop, or

other convenient location.

2. Decide on a name for your project, MyRecorder, for example. Open the SaleaeDeviceSdk-1.1.x

folder and create a new folder with this name.

3. Select the source folder, and file build_project.py. Copy and paste these into your new project

folder.

4. Open the terminal (under Applications/Utilities) and navigate to your new project folder.

Saleae Device SDK 1.1.8

12 Copyright 2011 Saleae LLC. All Rights Reserved.

a. Something like cd Desktop\SaleaeDeviceSdk-1.1.5\MyRecorder

5. Inside the source folder we copied is a single cpp file, ConsoleDemo.cpp. You can modify this, or

replace it, but for now we’ll leave it as is and get it building.

6. From the console, type python build_project.py

7. This will create two folders -- debug and release -- and build the application in each. Note that

the libraries the executable needs are also copied in from the Sdk’s lib folder.

8. To execute the new program navigate to the debug folder and run the program

a. Type cd debug

b. Type ./MyRecorder (replace MyRecorder with the name of your project)

Saleae Device SDK 1.1.8

13 Copyright 2011 Saleae LLC. All Rights Reserved.

9. To exit the program type exit, or e.

Making a SaleaeDevice Project with Xcode

Note that in this walkthrough we are using XCode on Snow Leopard. Your experience may be somewhat

different if you are in Tiger or Leopard.

1. Start XCode

2. From the File menu, choose New Project

3. For Choose a template for your new Project select Other, Empty Project. Click Choose.

Saleae Device SDK 1.1.8

14 Copyright 2011 Saleae LLC. All Rights Reserved.

4. Choose a name for your project, such as MyRecorder, etc. It needs to be one word. Specify this

as the project’s name.

5. Save the project in the root of the SaleaeDeviceSdk-1.1.x folder. This will create a folder called

YourProjectName

6. Open the folder SaleaeDeviceSdk-1.1.x in Finder. Copy the source folder and paste it into your

newly created project folder.

Saleae Device SDK 1.1.8

15 Copyright 2011 Saleae LLC. All Rights Reserved.

7. In XCode, under Groups & Files, right-click on Targets, and select Add->New Target

a. Select BSD, Shell Tool, and click Next.

Saleae Device SDK 1.1.8

16 Copyright 2011 Saleae LLC. All Rights Reserved.

b. For Target Name, enter your project’s name (MyRecorder as an example). Click Finish.

c. This will open the Target Info window. Close this.

8. In the Groups & Files list, select the project item at the very top of the list. Right click and select

Add->Existing Files.

a. Navigate to your source folder and select it. Click Add.

Saleae Device SDK 1.1.8

17 Copyright 2011 Saleae LLC. All Rights Reserved.

b. The defaults should be fine. Click Add.

9. Select the project item (at the top of the list), and click the Info button on the main toolbar.

a. Click the Build tab.

b. Set Configuration to All Configurations, and set Show to All Settings

c. Scroll down to Search Paths section

d. For Header Search Paths, enter ../include

e. Close the Project Info window.

10. Expand the Targets item until you see the Link Binary with Libraries item.

a. Right click on this item and select Add->Existing Files.

b. Navigate to the lib folder, in SaleaeDeviceSDK-1.1.5. Select this file:

i. libSaleaeDevice.dylib

c. The defaults should be fine. Click Add.

11. From the main menu, select Build->Build. Your project should build completely. However, it

won’t run because we need to copy the dylib into the same folder as the executable.

Saleae Device SDK 1.1.8

18 Copyright 2011 Saleae LLC. All Rights Reserved.

12. Under the Targets item select your executable (MyRecorder, in our case). Right-click on this and

select Add->New Build Phase->New Copy Files Build Case.

a. For Destination, choose Executables. Close the window.

b. Notice that under the project item is the library we’re linking against:

libSaleaeDevice.dylib. Drag these to the new Copy Files item we just created under

Target. (Under Groups & Files).

Saleae Device SDK 1.1.8

19 Copyright 2011 Saleae LLC. All Rights Reserved.

13. From the main menu, select Build->Build. This should copy the required libraries to the same

location as our executable.

Running & Debugging your Project

14. In XCode, open the source file (ConsoleDemo.cpp if you’re using the original file). This will be in

the source folder, under the project item.

15. Go down to the first line on OnConnect and click in the margin to create a breakpoint.

16. From the Build menu (at the top of the Mac desktop), select Build and Debug.

17. Click the little GDB Icon (a little black console with the letters “gdb” on it).

18. The application should run, and XCode should break execution at your breakpoint when you

plug in Logic.

Saleae Device SDK 1.1.8

20 Copyright 2011 Saleae LLC. All Rights Reserved.

ConsoleDemo.cpp – a Walkthrough

Include Files

We’ll need to include The SaleaeDeviceApi.h file – this is the SDK header file.

#include <SaleaeDeviceApi.h>

In ConsoleDemo, we’ll also need iostream and string. These aren’t needed for anything SDK specific.

#include <iostream>

#include <string>

Logic16 vs Logic support

While the SDK can manage more than one device, and more than one type of device – to keep things

simple we’ve added a define to control whether the demo works with Logic, or with Logic16.

Static callback functions

The Saleae Device SDK uses callback functions extensively. Internally we use a variety of callback

wrappers (boost, QT), but to reduce library dependencies to virtually nil, we’ll just be using regular old

c/c++ callbacks in our Device SDK.

void OnConnect(U64 device_id, GenericInterface* device_interface, void* user_data);

void OnDisconnect(U64 device_id, void* user_data);

void OnReadData(U64 device_id, U8* data, U32 data_length, void* user_data);

void OnWriteData(U64 device_id, U8* data, U32 data_length, void* user_data);

void OnError(U64 device_id, void* user_data);

As you can see, we can get called when a device is connected or disconnected, when it sends us data,

when we need to provide it with data, or when something goes wrong (Generally the “I couldn’t keep up

at this sample rate error”).

Notice that each of these functions provides a user_data parameter. When you register to receive a

callback, you can specify what you want passed there. This is often used in c++ so you can provide a

pointer to your class. In standard c/c++, you can’t register a non-static member function to receive a

callback. Passing a pointer to your object via user_data provides an effective, if cumbersome and crude,

way around this limitation.

Notice that each of these callbacks also provides a device_id. This is a 64-bit number that uniquely

identifies a particular Saleae device. You could manage several devices, and communicate with all of

them for instance. Note however that Logic does not provide a means to synchronize captures from

multiple Logics, so in practice combining Logics may not be highly useful. The ability to work with several

deferent Saleae devices – including ones of different types, is provided for future compatibility.

Saleae Device SDK 1.1.8

21 Copyright 2011 Saleae LLC. All Rights Reserved.

Global Variables

ConsoleDemo is pretty simple. We’re not defining any classes, like you might want to do. We’re just

defining standard static functions, and therefore we’ll need a handful of global variables.

LogicInterface* gLogicInterface = NULL;

U64 gLogicId = 0;

U32 gSampleRateHz = 4000000;

In particular, we’ll hold on to a pointer to Logic, its Device ID, and the sample rate we’ll be using. If we

wanted to work with multiple devices, we’d have to do a better job keeping track of the different

devices.

Main

The first thing we’ll do is call functions in DevicesManagerInterface to register OnConnect and

OnDisconnect callbacks. As soon as we call BeginConnect, we can get called on those functions. Note

that the calls will occur on another thread.

int main(int argc, char *argv[])

{

 DevicesManagerInterface::RegisterOnConnect(&OnConnect);

 DevicesManagerInterface::RegisterOnDisconnect(&OnDisconnect);

 DevicesManagerInterface::BeginConnect();

The next thing we do is start prompting for console input.

Before we get into that however, let’s handle OnConnect and OnDisconnect.

OnConnect Callback

void OnConnect(U64 device_id, GenericInterface* device_interface, void* user_data)

{

 if(dynamic_cast<LogicInterface*>(device_interface) != NULL)

 {

 std::cout << "A Logic device was connected (id=0x" << std::hex <<

device_id << std::dec << ")." << std::endl;

 gLogicInterface = (LogicInterface*)device_interface;

 gLogicId = device_id;

 gLogicInterface->RegisterOnReadData(&OnReadData);

 gLogicInterface->RegisterOnWriteData(&OnWriteData);

 gLogicInterface->RegisterOnError(&OnError);

 gLogicInterface->SetSampleRateHz(gSampleRateHz);

Saleae Device SDK 1.1.8

22 Copyright 2011 Saleae LLC. All Rights Reserved.

 }

}

The SDK allows for different Saleae devices to be supported. In OnConnect, we need to test the

device_interface pointer to see what type it is. If device_interface is a pointer to a LogicInterface object,

then we can start using it.

We set our global gLogicInterface pointer to this new pointer (again, this isn’t very sophisticated, but it’ll

work for our purposes). We set our gLogicId variable. Then we register the three callbacks that are

specific to the LogicInterface class: OnReadData, OnWriteData, and OnError.

Lastly we set the sample rate. The device can now be used.

Note that technically we should be using mutexes when we access our global variables as we’re actually

accessing them on two different threads. In this simple application we can get away with not bothering.

A more robust application would need to take care to prevent simultaneous access of any member

variables that are accessed from multiple threads.

OnDisconnect Callback

void OnDisconnect(U64 device_id, void* user_data)

{

 if(device_id == gLogicId)

 {

 std::cout << "A Logic device was disconnceted (id=0x" << std::hex <<

device_id << std::dec << ")." << std::endl;

 gLogicInterface = NULL;

 }

}

OnDisconnect provides us with the device_id of the Saleae device that has been disconnected. Note that

once this function ends, the underlying LogicInteface object will be destroyed soon thereafter, so this is

another case where thread safety is important. For our non-mission-critical little demo however, we’ll

be fine.

We simply set our global pointer to NULL so that code elsewhere can tell that they can’t access the

device any more.

ReadByte and WriteByte

Reading a single byte from Logic or having it output a byte (on its pins) is easiest thing you can do with

the SDK.

if(command == "readbyte" || command == "rb")

{

 std::cout << "Got value 0x" << std::hex << U32(gLogicInterface->GetInput()) <<

std::dec << std::endl;

Saleae Device SDK 1.1.8

23 Copyright 2011 Saleae LLC. All Rights Reserved.

}

else

if(command == "writebyte" || command == "wb")

{

 static U8 write_val = 0;

 gLogicInterface->SetOutput(write_val);

 std::cout << "Logic is now outputting 0x" << std::hex << U32(write_val) <<

std::dec << std::endl;

 write_val++;

}

By default Logic’s pins are inputs (high-z). As soon as you issue a write command, they change to

outputs. If you subsequently read, they immediately change back to inputs. There isn’t any way to read

on some pins and write on others unless you had two Logics connected, and were writing on one and

reading on the other exclusively.

Reading or writing a byte in this way is extraordinarily slow compared to streaming, which is what Logic

is primarily designed to do. However, it might be all you need depending on your application.

Please note that Logic has series 510-ohm resistors on its input pins, so output mode is limited to very

low currents. You may need to buffer the outputs to do things like drive LEDs.

Reading and Writing, and the OnReadData and OnWriteData Callbacks

What Logic is primarily designed to do is to read or write high-bandwidth streams. When reading, the

OnReadData callback is called with an array of data. You can expect this callback to be called at on the

order of 20Hz. The amount of data included in each callback will depend on the sample rate. The higher

the sample rate, the more data will arrive per callback. OnReadData is called sequentially – in the order

data is sampled. Data near the beginning of the array was collected before data later in the array.

OnReadData will not be called again until you return from the previous OnReadData callback, so you

should be careful not to do too much work in OnReadData – spending too much time in OnReadData

will cause the collection system to back up and ultimately OnError will be called when it overflows. If

you need to do heavy lifting, consider holding on to the data’s pointer, and providing it to a worker

thread in a thread-safe manner. You could also keep the data, and process it after you stop the read

process.

OnReadData provides the device_id of the device the data is coming from, a pointer to an array of bytes,

and the size of that array. You own the data, and are responsible for eventually freeing it, although this

could be much later.

To free the memory, use DevicesManagerInterface::DeleteU8ArrayPtr. This is because depending on the

operating system, it’s likely that memory was allocated on a different heap, and not one that you have

direct access to.

Saleae Device SDK 1.1.8

24 Copyright 2011 Saleae LLC. All Rights Reserved.

void OnReadData(U64 device_id, U8* data, U32 data_length, void* user_data)

{

 std::cout << "Read " << data_length << " bytes, starting with 0x" << std::hex <<

(int)*data << std::dec << std::endl;

 DevicesManagerInterface::DeleteU8ArrayPtr(data);

}

OnWriteData is similar to OnReadData, only instead of providing you with data, it’s asking for you to

provide it with data. The data itself is already allocated, you just to fill the contents. Note that as soon

you start the writing process, OnWriteData will be immediately called a couple dozen times, to make

sure the USB doesn’t get ahead of us and run out of data before we can provide it with more. As with

OnReadData, don’t spend too much time in OnWriteData. Note also that due to limitations with

WinUSB on Windows, you probably won’t be able to output data at more than 4MHz. Other platforms

don’t have this limitation, and should be able to write just as fast as they can read (24MHz).

void OnWriteData(U64 device_id, U8* data, U32 data_length, void* user_data)

{

 static U8 dat = 0;

 for(U32 i=0; i<data_length; i++)

 {

 *data = dat;

 dat++;

 data++;

 }

 std::cout << "Wrote " << data_length << " bytes of data." << std::endl;

}

To start reading or writing, call StartRead, or StartWrite. This assumes you’ve already registered the

appropriate callback functions.

OnError

A lot of SDK users are looking to set up some sort of automated test or data logger. Unfortunately Logic

is better suited to being a Logic analyzer, because it has a very limited hardware-side buffer, and can

easily overflow if the USB isn’t constantly pulling data from it. Don’t count on a capturing data for many

hours or days without interruption, even at slow sample rates. Your application must allow for the

possibility that a capture could fail at any time. When a capture fails, you won’t get bad data. All the

data that arrives at OnReadData is sequential and has no gaps. When an error happens, you’ll stop

getting OnReadData callbacks and OnError will be called. Once OnError is called, you won’t get any

more OnReadData calls.

Saleae Device SDK 1.1.8

25 Copyright 2011 Saleae LLC. All Rights Reserved.

What you can do – if your application is tolerant enough – is to simply handle this condition: make a

note that there was a break in the data at such and such a time, and start up the read again and

continue on.

However – you can’t restart the data collection from inside the OnError callback. You’ll need to do this

from a different thread (typically you would do this from your main thread).

Saleae Device SDK 1.1.8

26 Copyright 2011 Saleae LLC. All Rights Reserved.

C#.NET Support

In 1.1.8 we’ve added .NET support for Logic and Logic16. Inside the SaleaeDeviceSdk-1.1.x folder, there

will be a C#.NET folder. In here you will find the ConsoleDemo project. You should be able to build and

run this project right from its current location.

A few pointers for creating .NET projects

First, you’ll need to reference the SaleaeDeviceSdkDotNet.dll assembly. This is in lib\C#.NET.

You’ll also need the SaleaeDevice.dll – the native dll that you would use if you were using c++. Like the

.NET dll above, this will ultimately need to end up in the same folder as your exe. The easiest way to do

this is add it to your project: In the Solution Explorer, right click on your project and select Add-

>Existing Item. In the file types drop-down, select *.*, and then navigate to and select the

SaleaeDevice.dll (in the lib folder). Once added to your project, set the item’s Copy to Output Directory

property to Copy Always.

 The last thing to mention is you can’t restart a capture from inside the OnError callback. Instead, this

needs to be done from the main thread. You can use .NET’s Invoke functionally to do this.

