Saleae Device SDK 1.1.8

Contents

Starting a Device SDK Project 0N WINGOWScccociuiiiiiiiiieecieee et e e e e stee e s s aeeessnsaeeesnraesesnssaessnnnneeas 2

Starting @ DeVvice SDK ProjeCt 0N LiNUXoieieieiiieieiiiiiteueaeseseaeessssasases i nannnansnnnnnnnnnnnnnnnnnnsnsnsnsnsnnes 7
Debugging your Project With GDBcoiiii oottt e e e e eeararrae e e e e e s e s nnteeeeeeesennnsnnns 9

Starting @ DeVvice SDK ProjeCt 0N IMIAC. ittt ae s abasabebebebebabnees 11
Build Script / Command Line / GDB based DeViCe ProJECEcooveeeveeeeieetee ettt 11
Making a SaleaeDevice Project With XCOdeuuuiiviiiiiiciiiiie e 13
RUNNING & DEbUGZING YOUI PrOJECT...cccuiiiieciiiiee ettt ettt e e e et ae e e s aree e e s naee e e eareeas 19

ConsoleDemo.cpp —a WalkthrOUghuviiiiie e e e e e e e et re e e e e e e e esnrnees 20
T ol [0 [o =TT PPV PPRTOURROURPURO 20
Static callback FUNCLIONS.coouiiiiiie ettt 20
(C1le] L R T] o] 1T TSPV PPTOPR 21
Y= T o T TP 21
ONCONNECE CAllDACK ...ttt b e b e saee s s s 21
ONDISCONNECE CallDACK. eieiiieiee ettt e e s e s be e e saneesaneas 22
REAABYLE aNd WITEBYLO...ciieiiiee ettt e e e e et e e e s e te e e esataeeesntaeeeensseeesnnnaeeas 22
Reading and Writing, and the OnReadData and OnWriteData Callbacks........ccccccovvveiviiiieiieeeceee, 23
L0 0] =3 o PRSPPSO 24

L0 38 111 = YU o] o o o RSOOSR 26
A few pointers for creating .NET ProjeCtS......ciiiiiiii e eciiiee et ecttee et e e e e e saae e e e saraeeeenreeeeas 26

1 Copyright 2011 Saleae LLC. All Rights Reserved.

Saleae Device SDK 1.1.8

Starting a Device SDK Project on Windows

The instructions that follow are for setting up a Visual Studio project from scratch. Included in the SDK is

a vs2008 project called ConsoleDemo, which should immediately build and run. If you like, you can skip

the following section, and return to it if you have any questions about how a Visual Studio project

should be set up.

1. If you haven’t already, download the latest SaleaeDeviceSdk-1.1.x.zip file and extract to this to your

desktop, or other convenient location.

2. Launch VS2008 — we're using the C++ express version.

http://www.microsoft.com/express/Downloads/ (as of the time of this writing, there is V52008 tab

still on the page). Customers have reported that using V52010 will also work.

3. File->New->Project

a.

g.

"0 oo o

Visual C++; Win32

Win32 Console Application (under Templates)

Name: enter a name for the project, such as MyRecorder
Location: Desktop\SaleaeDeviceSdk-1.1.x

Make sure Create directory for solution is not checked.

Press OK.
r R
New Project — M
Project types: Templates:
Visual C++ ‘ Visual Studio installed templates
CLR M Win32 Console Application EWin32 Project
Win32
My Templates

General
j Search Online Templates...

A project for creating a Win32 console application

Name: JoeRecorder
Location: C:\Users\Joe\Desktop\SaleaeDeviceSdk-1.1.5 -
f JoeRecorder | Create directory for solution

OK] [Cancel]

Click Application Settings
i. Application Type: Console application
ii. Additional options:
1. Precompiled header (not checked)
2. Empty project (checked)

Copyright 2011 Saleae LLC. All Rights Reserved.

Saleae Device SDK 1.1.8

h. Click Finish.

-
Win32 Application Wizard - JoeRecorder m
= Application Settings
C:Ne
Overview Application type: Add common header files for:
| Application Settings © Windows application : "
@ Console application
©ou
(©) Static library
Additional options:

[¥] Empty project

) () (el

Explorer.

Delete the Header Files and Resource Files folders, from under our project item in the Solution

Open the SaleaeDeviceSdk-1.1.x folder, and copy the source folder into your new project folder.

a. Note: this will allow modifications to your own copy of the source, and leave the originals
unchanged. If this is not desired, you can simply use the source files in their original location.

In Visual Studio, right click on the Source Files folder, and select Add->Existing Item.
Navigate to your new project folder, into the source folder (that we just copied) and select
ConsoleDemo.cpp.

File Edit View Project Build Debug Tools

.;D'_J'kjug $ H[3 Wh

-

‘Solution Explorer - JoeRecorder

» _] Solution ‘JoeRecorder' (1 project)

5]

=) 7 Source Files
¢+ ConsoleDemo.cpp

~ x|

Copyright 2011 Saleae LLC. All Rights Reserved.

Saleae Device SDK 1.1.8

8. Inthe Solution Explorer, right click on the project item (not the solution item) and choose
Properties.
a. Under Configuration, select All Configurations.

ety

Configuration: [All Configurations V]

b. Under C/C++, select General. Under Additional Include Directories, enter
S(ProjectDir)..\include

e R)

| Configuration: | All Configurati v| Platform: [Active(Win32) ~] [cenfiguration Manager... |
» Common Properties - Additional Include Directories $(ProjectDir)..\include W
4 Configuration Properties | | Resolve #using References
General Debug Information Format
Debugging Suppress Startup Banner Yes (/nologo)

[4 C/Cs+ Warning Level Level 3 /W3)
I General| Detect 64-bit Portability Issues No
\ Optimization Treat Warnings As Errors No

Breprocessor; Use UNICODE Response Files Yes
| Code Generation I
! Language

Precompiled Heade
(1 Output Files

Browse Information

Advanced Till

Command Line

4 Linker

General

Input

Manifest File

Debugging Additional Include Directories

System ~ | | Specifies one or more directories to add to the include path; use semi-colon delimited list if more

0 e > than one. (/I[path])

[ok][cancet |[apply |

c. Expand Linker and select General. Under Additional Library Directories, enter
S(ProjectDir)..\lib

4 Copyright 2011 Saleae LLC. All Rights Reserved.

Saleae Device SDK 1.1.8

e)

| Configuration: | All Configurati v| Platform: [Active(Win32) ~ [cenfiguration Manager... |
» Common Properties -~ Output File $(OutDin)\S(ProjectName).exe
4 Configuration Properties F Show Progress Not Set
General Version
Debugging Enable Incremental Linking
| 4 C/Cs+ Suppress Startup Banner Yes (/NOLOGO)
| General Ignore Import Library No
) Optimization E Register Output No
Breprocessog . Per-user Redirection No
! f::'ﬁ‘:”a"“ Additional Library Directories $(ProjectDir).\lib |
Precgomgpile A Hesde Link Library Dependencies Yes
I Output Files Use Library Dependency Inputs No
Bicvia Ifonmation Use UNICODE Response Files Yes
Advanced Tl
Command Line
4 Linker
[General|
Input
Manifest File
Debugging Output File
iystem . ~ | | Override the default output file name. (/OUT:[file])
« mn »

[ok][cancet |[apply |

d. Under Linker, select Input. Under Additional Dependencies, enter SaleaeDevice.lib

)

| Configuration: | All Configurati v| Platform: [Active(Win32) ~] [cenfiguration Manager... |
» Common Properties -~ Additional Dependencies SaleaeDevice.lib
4 Configuration Properties T Ignore All Default Libraries No
General Ignore Specific Library
Debugging Module Definition File
I a4 C/C++ Add Module to Assembly
| Gen.era.l) Embed Managed Resource File
\ Optimization = Force Symbol References
Preprocessor’ Delay Loaded DLLs
I Code Generation Assembly Link Resource |
| Language
Precompiled Heade
[l Output Files
Browse Information
Advanced Tii
Command Line
4 Linker
General
(Input|
Manifest File
Debugging Additional Dependencies
iystem . ~ | | Specifies additional items to add to the link line (ex: kernel32.lib); configuration specific.
« n »

[ok][cancet |[apply |

e. Expand Build Events, and select Post-build Event.
i. Under Command Line, enter copy $(ProjectDir)..\lib*.dll $(TargetDir)
ii. This will copy required DLLs to the same location as the executable. In production,
make sure these DLLs are included with the executable, in the same directory.

Copyright 2011 Saleae LLC. All Rights Reserved.

Saleae Device SDK 1.1.8

JoeRecorder Property Pages '

Configuration: [All Configurati ~| Platform: [Active(win32) | ey e— ’

Browse Inf tion ~ C d Line copy $(ProjectDir)..\lib\".dll $(TargetDir)
Advanced Description
Command Line Excluded From Build No
4 Linker
W General
| Input
) Manifest File
Debugging
[l System B I
U Optimization
Embedded IDL
(] Advanced
Command Line
> Manifest Tool
» XML Document Genera =
> Browse Information
4 Build Events
Pre-Build Event
Pre-Link Event
| Post-Build Event | C e
p» Custom Build Step =

Specifies a command line for the post-build event tool to run.

« n Jd

[ok][cancet |[apply |

f. Click OK.
9. You should now be able to build and run the application.

6 Copyright 2011 Saleae LLC. All Rights Reserved.

Saleae Device SDK 1.1.8

Starting a Device SDK Project on Linux

1. If you haven’t already, download and extract the SaleaeDeviceSdk-1.1.x to your desktop, or

other convenient location.
2. Decide on a name for your project, MyRecorder, for example. Open the SaleaeDeviceSdk-1.1.x

folder and create a new folder with this name.

File Edit View Go Bookmarks Help
£ 0OC a® < wwa [movesly A

Placesy % i silbuild) jmiDeskiop) SaleasDevicesdk:1.:1.3
=it - tl ll wd

= File System documentation include lib MyRecorder
il Network

U 8.0GBFile... & o

=l rint
1 CompileSh... & J J &

& Trash source vs2008 build_project.py

i Documents

il Music

@) Pictures h
i@ Videos

& Downloads

"MyRecorder" selected (containing 0 items)

3. Select the source folder, and file build_project.py. Copy and paste these into your new project

folder.

7 Copyright 2011 Saleae LLC. All Rights Reserved.

Saleae Device SDK 1.1.8

File Edit View Go Bookmarks Help

*
| abuild | @ Deskiop saleaeDevicesdk-1.1.5

®

Places v

s build

@ Desktop J

. File System dacumentation

il Network

U 8.0GBFile... & i
1 CompileSh... A

& Trash source

i Documents
i Music

@) Pictures

i@ Videos

& Downloads

TR R

- - d

include lib MyRecorder

L
3

vs2008 build_project.py

N

1 folder selected (containing 1 item), 1 other item selected (3.1 KB)

File Edit View Go Bookmarks Help

{@Back v W

®

Places v

i build

@ Desktop i

1 File System

il Network souree
U 8.0GBFile... &

1 CompileSh... A

2 Trash

i Documents
i Music

@) Pictures

i@ Videos

i Downloads

C am oo M A

% aibuild [Desktop _SaleacDevicesdk-115 MyRecorder

build_project.py

1 folder selected (containing 1 item), 1 other item selected (3.1 KB)

Open console and navigate to your new project folder. Something like: cd
Desktop\SaleaeDeviceSdk-1.1.5\MyRecorder

Inside the source folder we copied is a single cpp file, ConsoleDemo.cpp. You can modify this, or
replace it, but for now we’ll leave it as is and get it building.

From the console, type python build_project.py

Copyright 2011 Saleae LLC. All Rights Reserved.

Saleae Device SDK 1.1.8

File Edit View Terminal Help

build@ubuntu-laptop:~$ cd Desktop/SaleaeDeviceSdk-1.1.5/MyRecorder/
build@ubuntu-laptop:~/Desktop/SaleaeDeviceSdk-1.1.5/MyRecorder$ python build pro
ject.py

Running on Linux

g++ -I"../include" -03 -w -c -fpic -o"release/ConsoleDemo.o" "source/ConsoleDemo

.cpp"
g++ -I"../include" -00 -w -c -fpic -g -o0"debug/ConsoleDemo.o" "source/ConsoleDem

project name is: MyRecorder

g++ -WLl,-rpath, '$ORIGIN: $ORIGIN/../../lib" -L"../lib" -1SaleaeDevice -lAnalyzer
-0 release/MyRecorder release/ConsoleDemo.o

g++ -Wl,-rpath, '$ORIGIN:$ORIGIN/../../lib" -L"../lib" -1SaleaeDevice -lAnalyzer
-0 debug/MyRecorder debug/ConsoleDemo.o
build@ubuntu-laptop:~/Desktop/SaleaeDeviceSdk-1.1.5/MyRecorder$ D

7. This will create two folders -- debug and release -- and build the application in each.
8. To execute the new program navigate to the debug folder and run the program:

a. cddebug
b. ./MyRecorder (replace MyRecorder with the name of your project)

File Edit View Terminal Help

build@ubuntu-laptop:~/Desktop/SaleaeDeviceSdk-1.1.5/MyRecorder$ cd debug/
build@ubuntu-laptop:~/Desktop/SaleaeDeviceSdk-1.1.5/MyRecorder/debug$./MyRecorder
Logic is currently set up to read and write at 4000000 Hz. You can change this in

the code.

You can type read, write, readbyte, writebyte, stop, or exit.
(r, w, rb, wb, s, and e for short)

9. To exit the program type exit, or e.
Debugging your Project with GDB

1. From your application’s debug folder, type gdb MyRecorder (substitute your project name)
2. Set a breakpoint to be fired when Logic connects:

9 Copyright 2011 Saleae LLC. All Rights Reserved.

10

Saleae Device SDK 1.1.8

a. type: break ::OnConnect
Start the program
a. Typerun
You should get a breakpoint when you connect Logic.
Type step to step line by line after a breakpoint has been hit, and continue to continue normal
execution.
More in-depth use of GDB is outside the scope of this document.

Copyright 2011 Saleae LLC. All Rights Reserved.

Saleae Device SDK 1.1.8

Starting a Device SDK Project on Mac

Build Script / Command Line / GDB based Device Project

11

1. If you haven’t already, download and extract the SaleaeDeviceSdk-1.1.x to your desktop, or

other convenient location.

2. Decide on a name for your project, MyRecorder, for example. Open the SaleaeDeviceSdk-1.1.x
folder and create a new folder with this name.

3. Select the source folder, and file build_project.py. Copy and paste these into your new project

folder.

O 6

(] SaleaeDeviceSdk-1.1.5 =)

¥ DEVICES
£ iDisk
=} MacMini
| NO NAME
¥ PLACES
Desktop
£ Build
f_ Applications
[3] Documents

¥ SEARCH FOR
(O Today
(5 Yesterday
(L) Past Week
All Images
All Movies
All Documents

»

e
-

documentation include lib

PYTHON

source vs2008 build_project.py

[
[

PR

MyRecorder

2 of 7 selected, 584.99 GB available e

800

¥ DEVICES
£l ibisk
=) MacMini
__ NO NAME
¥ PLACES
Desktop
£ Build
ﬁ Applications
[} Documents

¥ SEARCH FOR
() Today
(4 Yesterday
(L) Past Week
All Images
All Movies
All Documents

(<[] A=[o[=) [o](] a 3

(] MyRecorder =/

- —_—

m‘

build_project.py source

4. Open the terminal (under Applications/Utilities) and navigate to your new project folder.

Copyright 2011 Saleae LLC. All Rights Reserved.

12

Saleae Device SDK 1.1.8

a. Something like cd Desktop\SaleaeDeviceSdk-1.1.5\MyRecorder

e OO Terminal — bash — 73x8

Last login: Fri Jan 14 13:01:01 on ttys000 B8
Joes-Mac-Mini:~ Build$ cd Desktop/SaleaeDeviceSdk-1.1.5/MyRecorder/
Joes-Mac-Mini:MyRecorder Builds [

5. Inside the source folder we copied is a single cpp file, ConsoleDemo.cpp. You can modify this, or
replace it, but for now we’ll leave it as is and get it building.
6. From the console, type python build_project.py

e O o Terminal — bash — 74x17

Joes-Mac-Mini:MyRecorder Build$ python build_project.py]
Running on Darwin

g++ -I"../include" -03 -w -c -fpic -o"release/ConsoleDemo.o" "source/Conso
leDemo.cpp"

g++ -I"../include" -00 -w -c -fpic -g -o"debug/ConsoleDemo.o" "source/Cons
oleDemo.cpp"

project name is: MyRecorder

g++ -L"../lib" -1SaleaeDevice -lAnalyzer -o release/MyRecorder release/Con
soleDemo.o

g++ -L"../lib" -1SaleaeDevice -lAnalyzer -o debug/MyRecorder debug/Console
Demo.o

cp ../lib/*.dylib debug

cp ../lib/*.dylib release m

Joes-Mac-Mini:MyRecorder Builds fi

7. This will create two folders -- debug and release -- and build the application in each. Note that
the libraries the executable needs are also copied in from the Sdk’s /ib folder.
8. To execute the new program navigate to the debug folder and run the program
a. Type cd debug
b. Type./MyRecorder (replace MyRecorder with the name of your project)

Copyright 2011 Saleae LLC. All Rights Reserved.

Saleae Device SDK 1.1.8

[CESNS) Terminal — MyRecorder — 74x17

Joes-Mac-Mini:MyRecorder Build$ cd debug/ 8

Joes-Mac-Mini:debug Build$./MyRecorder .
Logic is currently set up to read and write at 4000000 Hz. You can change
this in the code.

You can type read, write, readbyte, writebyte, stop, or exit.
(r, w, rb, wb, s, and e for short)

9. To exit the program type exit, or e.
Making a SaleaeDevice Project with Xcode

Note that in this walkthrough we are using XCode on Snow Leopard. Your experience may be somewhat
different if you are in Tiger or Leopard.

1. Start XCode
2. From the File menu, choose New Project
3. For Choose a template for your new Project select Other, Empty Project. Click Choose.

13 Copyright 2011 Saleae LLC. All Rights Reserved.

Saleae Device SDK 1.1.8

0N o New Project

Choose a template for your new project:

‘; Mac 0S X

Application
Framework & Library
Application Plug-in Empty Project External Build

System Plug-in System

{ _‘! Empty Project

This is an empty project with no files, targets, or build configurations.

Cancel (Choose...)

V

4. Choose a name for your project, such as MyRecorder, etc. It needs to be one word. Specify this
as the project’s name.

Save As: [MyRecorder] E]
Where: [(] SaleaeDeviceSdk-1.1.5 e
Cancel)
5. Save the project in the root of the SaleaeDeviceSdk-1.1.x folder. This will create a folder called
YourProjectName
6.

Open the folder SaleaeDeviceSdk-1.1.x in Finder. Copy the source folder and paste it into your
newly created project folder.

14 Copyright 2011 Saleae LLC. All Rights Reserved.

15

7.

a.

Saleae Device SDK 1.1.8

2 D

¥ DEVICES

£l ibisk
=) MacMini
| NO NAME a

documentation

source

¥ PLACES
B Desktop
£ Build
7 Applications
[Documents

¥ SEARCH FOR
(© Today
(L) Yesterday
(L) Past Week
(& All Images
(& All Movies
- All Documents

include lib

m

vs2008 build_project.py

MyRecorder

¥V DEVICES

£l ibisk
= MacMini
| NO NAME

»

¥ PLACES
A Desktop
£ Build
7\ Applications
[Documents
¥ SEARCH FOR
(© Today
(L) Yesterday
(L) Past Week
(& All Images
(& All Movies
i All Documents

MyRecorder.xcode

proj

In XCode, under Groups & Files, right-click on Targets, and select Add->New Target

Select BSD, Shell Tool, and click Next.

Copyright 2011 Saleae LLC. All Rights Reserved.

Saleae Device SDK 1.1.8

Choose a template for your new target:

"a]mcosx

Cocoa
Application Plug-in

Dynamic Library Object File Static Library
System Plug-in
Other

@

- Shell Tool

Target for building a command-line tool that uses BSD APIs.

{ . N\
Cancel (_ Previous (—MH

/4
T —

b. For Target Name, enter your project’s name (MyRecorder as an example). Click Finish.

New Shell Tool
Target Name: [MyRecorded]
Add To Project: | MyRecorder B

("previous) (Finish)

/
e —

¢. This will open the Target Info window. Close this.

8. Inthe Groups & Files list, select the project item at the very top of the list. Right click and select

Add->Existing Files.

a. Navigate to your source folder and select it. Click Add.

Copyright 2011 Saleae LLC. All Rights Reserved.

17

Saleae Device SDK 1.1.8

b. The defaults should be fine. Click Add.

0

(L HeXé) [e ConsoleDemo.cpp - MyRecorder

[Debug '] @ & O o Q- String Matching
Overview Action Breakpoints Build and Run Tasks Info Search

Groups & Files II» File Name A| A Code <) A
v ﬁ MyRecorder 8 [:_-j ConsoleDemo.cpp v

v [] source

» | | Products
v . Targets

> @ MyRecorder
> (Z Executables
v (4 Find Results

e

» (1% Bookmarks
» Edscm -

@ Project Symbols < » [gConsoleDemo.cpp:1 $ <No selected symbol> 3 I, "™, |Cel#s | ® |@
» (@] Implementation Files #include <SaleaeDeviceApi.h> B
» (@ Interface Builder Files W T T — m

#include <string>

void OnConnect(U64 device_id, GenericInterface* device_interface, void# |
void OnDisconnect(U64 device_id, voidx user_data);

void OnReadData(U64 device_id, U8* data, U32 data_length, void* user_dati
void OnWriteData(U64 device_id, UB* data, U32 data_length, void* user_da
void OnError(U64 device_id, void* user_data);

LogicInterface* glLogicInterface = NULL;
U64 glogicId = 0;
U32 gSampleRateHz = 4000000;

int main(int argc, char *argv(])
{

DevicesManagerInterface::RegisterOnConnect(&OnConnect);
DevicesManagerInterface::ReqisterOnDisconnect(&OnDisconnect);

9. Select the project item (at the top of the list), and click the Info button on the main toolbar.
a. Click the Build tab.
b. Set Configuration to All Configurations, and set Show to All Settings

8eno

Configuration: ’;AII Configurations

X

«

Show: [All Settings)

¢. Scroll down to Search Paths section
d. For Header Search Paths, enter ../include
e. Close the Project Info window.
10. Expand the Targets item until you see the Link Binary with Libraries item.
a. Right click on this item and select Add->Existing Files.
b. Navigate to the lib folder, in SaleaeDeviceSDK-1.1.5. Select this file:
i. libSaleaeDevice.dylib
c. The defaults should be fine. Click Add.
11. From the main menu, select Build->Build. Your project should build completely. However, it
won’t run because we need to copy the dylib into the same folder as the executable.

Copyright 2011 Saleae LLC. All Rights Reserved.

18

Saleae Device SDK 1.1.8

12. Under the Targets item select your executable (MyRecorder, in our case). Right-click on this and
select Add->New Build Phase->New Copy Files Build Case.

a.
b.

For Destination, choose Executables. Close the window.

Notice that under the project item is the library we’re linking against:
libSaleaeDevice.dylib. Drag these to the new Copy Files item we just created under
Target. (Under Groups & Files).

Qv String Matching

Groups & Files
v P8 MyRecorder

] [} libSaleaeDevice.dylib

¥] source
[é ConsoleDemo.cpp
> iproducts
V@Targets
v [MyRecorder

» [Compile Sources

» [Link Binary With Libra

v [Copy Files —
» <4 Executables <|»] S = c #. ®|
v Find Results No Editor
» (1% Bookmarks .
»Edscm

@ Project Symbols

» (@] Implementation Files
» [i@] Interface Builder Files

Qr String Matching

 Groups & Files B il n
v PN MyRecorder &= libSaleaeDevice.dylib
&= libSaleaeDevice.dylib
¥(] source
[é ConsoleDemo.cpp
» (] Products
v @ Targets
v . MyRecorder
» [Compile Sources
» [Link Binary With Libraries
v [l Copy Files (1) =

¥1 libSaleaeDevice.dylib <> S =lc.l#® |

» (4 Executables No Editor
v Find Results -
» (1% Bookmarks
»Edscm

@ Project Symbols
» @] Implementation Files
» (@] Interface Builder Files

Copyright 2011 Saleae LLC. All Rights Reserved.

Saleae Device SDK 1.1.8

13. From the main menu, select Build->Build. This should copy the required libraries to the same

location as our executable.
Running & Debugging your Project

14. In XCode, open the source file (ConsoleDemo.cpp if you're using the original file). This will be in
the source folder, under the project item.

15. Go down to the first line on OnConnect and click in the margin to create a breakpoint.

16. From the Build menu (at the top of the Mac desktop), select Build and Debug.

17. Click the little GDB Icon (a little black console with the letters “gdb” on it).

18. The application should run, and XCode should break execution at your breakpoint when you

plug in Logic.

19 Copyright 2011 Saleae LLC. All Rights Reserved.

Saleae Device SDK 1.1.8

ConsoleDemo.cpp - a Walkthrough
Include Files

WEe’ll need to include The SaleaeDeviceApi.h file — this is the SDK header file.

#include <SaleaeDeviceApi.h>

In ConsoleDemo, we'll also need jostream and string. These aren’t needed for anything SDK specific.

#include <iostream>

#include <string>

Logic16 vs Logic support

While the SDK can manage more than one device, and more than one type of device — to keep things
simple we’ve added a define to control whether the demo works with Logic, or with Logic16.

Static callback functions

The Saleae Device SDK uses callback functions extensively. Internally we use a variety of callback
wrappers (boost, QT), but to reduce library dependencies to virtually nil, we’ll just be using regular old
c/c++ callbacks in our Device SDK.

void OnConnect(U64 device_id, GenericInterface* device_interface, void* user_data);
void OnDisconnect(U64 device_id, void* user_data);

void OnReadData(U64 device_id, U8* data, U32 data_length, void* user_data);

void OnWriteData(U64 device_id, U8* data, U32 data_length, void* user_data);

void OnError(U64 device_id, void* user_data);

As you can see, we can get called when a device is connected or disconnected, when it sends us data,
when we need to provide it with data, or when something goes wrong (Generally the “I couldn’t keep up
at this sample rate error”).

Notice that each of these functions provides a user_data parameter. When you register to receive a
callback, you can specify what you want passed there. This is often used in c++ so you can provide a
pointer to your class. In standard c/c++, you can’t register a non-static member function to receive a
callback. Passing a pointer to your object via user_data provides an effective, if cumbersome and crude,
way around this limitation.

Notice that each of these callbacks also provides a device id. This is a 64-bit number that uniquely
identifies a particular Saleae device. You could manage several devices, and communicate with all of
them for instance. Note however that Logic does not provide a means to synchronize captures from
multiple Logics, so in practice combining Logics may not be highly useful. The ability to work with several
deferent Saleae devices — including ones of different types, is provided for future compatibility.

20 Copyright 2011 Saleae LLC. All Rights Reserved.

Saleae Device SDK 1.1.8

Global Variables

ConsoleDemo is pretty simple. We're not defining any classes, like you might want to do. We're just
defining standard static functions, and therefore we’ll need a handful of global variables.
LogicInterface* gLogicInterface = NULL;
U64 gLogicId = 0;
U32 gSampleRateHz = 4000000;

In particular, we’ll hold on to a pointer to Logic, its Device ID, and the sample rate we’ll be using. If we
wanted to work with multiple devices, we’d have to do a better job keeping track of the different
devices.

Main

The first thing we’ll do is call functions in DevicesManagerinterface to register OnConnect and
OnDisconnect callbacks. As soon as we call BeginConnect, we can get called on those functions. Note
that the calls will occur on another thread.
int main(int argc, char *argv[])
{
DevicesManagerInterface: :RegisterOnConnect (&OnConnect);
DevicesManagerInterface: :RegisterOnDisconnect (&OnDisconnect);

DevicesManagerInterface: :BeginConnect () ;

The next thing we do is start prompting for console input.

Before we get into that however, let’s handle OnConnect and OnDisconnect.

OnConnect Callback
void OnConnect(U64 device_id, GenericInterface* device_interface, void* user_data)

{

if (dynamic_cast<LogicInterface*>(device_interface) != NULL)

{

std::cout << "A Logic device was connected (id=0x" << std::hex <<
device_id << std::dec << ")." << std::endl;

gLogicInterface = (LogicInterface*)device_interface;

gLogicId = device_id;

glLogicInterface->RegisterOnReadData(&OnReadData);
glLogicInterface->RegisterOnWriteData(&OnWriteData);
glLogicInterface->RegisterOnError (&OnError);

gLogicInterface->SetSampleRateHz (gSampleRateHz);

21 Copyright 2011 Saleae LLC. All Rights Reserved.

Saleae Device SDK 1.1.8

}

The SDK allows for different Saleae devices to be supported. In OnConnect, we need to test the
device_interface pointer to see what type it is. If device_interface is a pointer to a LogicInterface object,
then we can start using it.

We set our global gLlogicinterface pointer to this new pointer (again, this isn’t very sophisticated, but it’ll
work for our purposes). We set our glogicld variable. Then we register the three callbacks that are
specific to the Logicinterface class: OnReadData, OnWriteData, and OnError.

Lastly we set the sample rate. The device can now be used.

Note that technically we should be using mutexes when we access our global variables as we’re actually
accessing them on two different threads. In this simple application we can get away with not bothering.
A more robust application would need to take care to prevent simultaneous access of any member
variables that are accessed from multiple threads.

OnDisconnect Callback

void OnDisconnect (U64 device_id, void* user_data)
{

if(device_id == gLogicId)

{

std::cout << "A Logic device was disconnceted (id=0x" << std::hex <<
device_id << std::dec << ")." << std::endl;

glogicInterface = NULL;

}

OnDisconnect provides us with the device_id of the Saleae device that has been disconnected. Note that
once this function ends, the underlying Logicinteface object will be destroyed soon thereafter, so this is
another case where thread safety is important. For our non-mission-critical little demo however, we’'ll
be fine.

We simply set our global pointer to NULL so that code elsewhere can tell that they can’t access the
device any more.

ReadByte and WriteByte

Reading a single byte from Logic or having it output a byte (on its pins) is easiest thing you can do with
the SDK.

if(command == "readbyte" || command == "rb")
{

std::cout << "Got value 0x" << std::hex << U32(gLogicInterface->GetInput()) <<
std::dec << std::endl;

22 Copyright 2011 Saleae LLC. All Rights Reserved.

Saleae Device SDK 1.1.8

}

else

if (command == "writebyte" || command == "wb")
{

static U8 write_val = 0;

glogicInterface->SetOutput (write_val);

std::cout << "Logic is now outputting 0x" << std::hex << U32(write_val) <<
std::dec << std::endl;

write_val++;

}

By default Logic’s pins are inputs (high-z). As soon as you issue a write command, they change to
outputs. If you subsequently read, they immediately change back to inputs. There isn’t any way to read
on some pins and write on others unless you had two Logics connected, and were writing on one and
reading on the other exclusively.

Reading or writing a byte in this way is extraordinarily slow compared to streaming, which is what Logic
is primarily designed to do. However, it might be all you need depending on your application.

Please note that Logic has series 510-ohm resistors on its input pins, so output mode is limited to very
low currents. You may need to buffer the outputs to do things like drive LEDs.

Reading and Writing, and the OnReadData and OnWriteData Callbacks

What Logic is primarily designed to do is to read or write high-bandwidth streams. When reading, the
OnReadData callback is called with an array of data. You can expect this callback to be called at on the
order of 20Hz. The amount of data included in each callback will depend on the sample rate. The higher
the sample rate, the more data will arrive per callback. OnReadData is called sequentially —in the order
data is sampled. Data near the beginning of the array was collected before data later in the array.
OnReadData will not be called again until you return from the previous OnReadData callback, so you
should be careful not to do too much work in OnReadData — spending too much time in OnReadData
will cause the collection system to back up and ultimately OnError will be called when it overflows. If
you need to do heavy lifting, consider holding on to the data’s pointer, and providing it to a worker
thread in a thread-safe manner. You could also keep the data, and process it after you stop the read
process.

OnReadData provides the device_id of the device the data is coming from, a pointer to an array of bytes,
and the size of that array. You own the data, and are responsible for eventually freeing it, although this
could be much later.

To free the memory, use DevicesManagerinterface::DeleteU8ArrayPtr. This is because depending on the
operating system, it’s likely that memory was allocated on a different heap, and not one that you have
direct access to.

23 Copyright 2011 Saleae LLC. All Rights Reserved.

Saleae Device SDK 1.1.8

void OnReadData(U64 device_id, U8* data, U32 data_length, void* user_data)
{

std::cout << "Read " << data_length << " bytes, starting with 0x" << std::hex <<
(int) *data << std::dec << std::endl;

DevicesManagerInterface: :DeleteU8ArrayPtr (data);

}

OnWriteData is similar to OnReadData, only instead of providing you with data, it’s asking for you to
provide it with data. The data itself is already allocated, you just to fill the contents. Note that as soon
you start the writing process, OnWriteData will be immediately called a couple dozen times, to make
sure the USB doesn’t get ahead of us and run out of data before we can provide it with more. As with
OnReadData, don’t spend too much time in OnWriteData. Note also that due to limitations with
WinUSB on Windows, you probably won’t be able to output data at more than 4MHz. Other platforms
don’t have this limitation, and should be able to write just as fast as they can read (24MHz).

void OnWriteData(U64 device_id, U8* data, U32 data_length, void* user_data)

{
static U8 dat = 0;

for(U32 i=0; i<data_length; i++)
{

*data = dat;

dat++;

data++;

std::cout << "Wrote " << data_length << " bytes of data." << std::endl;

}

To start reading or writing, call StartRead, or StartWrite. This assumes you’ve already registered the
appropriate callback functions.

OnError

A lot of SDK users are looking to set up some sort of automated test or data logger. Unfortunately Logic
is better suited to being a Logic analyzer, because it has a very limited hardware-side buffer, and can
easily overflow if the USB isn’t constantly pulling data from it. Don’t count on a capturing data for many
hours or days without interruption, even at slow sample rates. Your application must allow for the
possibility that a capture could fail at any time. When a capture fails, you won’t get bad data. All the
data that arrives at OnReadData is sequential and has no gaps. When an error happens, you’ll stop
getting OnReadData callbacks and OnError will be called. Once OnError is called, you won't get any
more OnReadData calls.

24 Copyright 2011 Saleae LLC. All Rights Reserved.

Saleae Device SDK 1.1.8

What you can do — if your application is tolerant enough — is to simply handle this condition: make a

note that there was a break in the data at such and such a time, and start up the read again and
continue on.

However — you can’t restart the data collection from inside the OnError callback. You’ll need to do this
from a different thread (typically you would do this from your main thread).

25 Copyright 2011 Saleae LLC. All Rights Reserved.

Saleae Device SDK 1.1.8

C#.NET Support

In 1.1.8 we’ve added .NET support for Logic and Logicl6. Inside the SaleaeDeviceSdk-1.1.x folder, there
will be a C#.NET folder. In here you will find the ConsoleDemo project. You should be able to build and
run this project right from its current location.

A few pointers for creating .NET projects

First, you’ll need to reference the SaleaeDeviceSdkDotNet.dll assembly. This is in lib\C#.NET.

You’'ll also need the SaleaeDevice.dll — the native dll that you would use if you were using c++. Like the
.NET dll above, this will ultimately need to end up in the same folder as your exe. The easiest way to do
this is add it to your project: In the Solution Explorer, right click on your project and select Add-
>Existing Item. In the file types drop-down, select *.*, and then navigate to and select the
SaleaeDevice.dll (in the lib folder). Once added to your project, set the item’s Copy to Output Directory
property to Copy Always.

The last thing to mention is you can’t restart a capture from inside the OnError callback. Instead, this
needs to be done from the main thread. You can use .NET’s Invoke functionally to do this.

26 Copyright 2011 Saleae LLC. All Rights Reserved.

